MANAGING INFLOW AND INFILTRATION

NorCal Pipe Users Group Monthly Meeting | January 8, 2019

LANI GOOD, PE
Presentation Outline

- Sources of Inflow/Infiltration (I/I)
- I/I Identification/Quantification Techniques
- I/I Analysis Tools
- I/I Reduction Methods
Sources of Inflow/Infiltration
Typical Sources of I/I
Saltwater Intrusion

Conductivity, μS/cm
- 5,000 and less
- 5,000 - 20,000
- 20,000 - 30,000
- 30,000 and greater

Note: Data points are labeled with the maximum EC measurement and the number of data points (in parentheses).
Saltwater Intrusion Issue: WWTP Salinity

Graph Description:
- **EC, μS/cm**: Y-axis (left side)
- **Sample Date**: X-axis (bottom)
- **Lagoon Level (secondary axis)**
- **WWTP Influent Composite EC**
- **Lagoon Outlet EC (divided by 10)**

Key Observations:
- EC values fluctuate over time, with peaks and troughs.
- Lagoon level shows a secondary trend.
- WWTP influent composite EC is consistently monitored.
- Lagoon outlet EC values, when divided by 10, are depicted.

Company: West Yost Associates
Identification & Quantification Techniques
<table>
<thead>
<tr>
<th>Technique</th>
<th>Objective</th>
<th>Accuracy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Micro-Basin Flow</td>
<td>Quantifies I/I levels</td>
<td>High – Limited to minimum flows</td>
</tr>
<tr>
<td>Monitoring</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Flow Level Monitoring</td>
<td>Confirms high vs. low I/I levels</td>
<td>Medium – No minimum flow limit, but not accurate for flow rates: only relative rainfall response</td>
</tr>
<tr>
<td>CCTV Inspection</td>
<td>Significant structural defects, poor maintenance,</td>
<td>Medium – Defect ratings are subjective, leaks may not be visible</td>
</tr>
<tr>
<td></td>
<td>visual I/I</td>
<td></td>
</tr>
<tr>
<td>Smoke Testing</td>
<td>Cross connections, inflow sources, structural defects</td>
<td>Low – Detects some (above flowline) but not all</td>
</tr>
<tr>
<td>Dye Testing</td>
<td>Confirms cross connections</td>
<td>High – Does not locate exact point of inflow along main/lateral – only yes/no</td>
</tr>
<tr>
<td>Visual Manhole</td>
<td>Determines structural defects, poor design, or</td>
<td>Medium – Limited to accessible manholes only; leaks may not be visible</td>
</tr>
<tr>
<td>Inspection</td>
<td>settlement issues</td>
<td></td>
</tr>
<tr>
<td>Salinity Monitoring</td>
<td>Detect elevated salinity levels in wastewater</td>
<td>High – Can be used in successive manholes to detect changes in salinity along a single pipeline; gather diurnal data (not grab samples)</td>
</tr>
</tbody>
</table>
Wastewater Flow & Rainfall Monitoring

Goal is to Capture:

- Minimum of two storms: all meters/rain gauges working
- Reach typical ground saturation
- Big storms (2-year), not huge storms (no SSO flow losses)
- Good response at flow meters
- Dry weather data
Challenge: Capturing Storms

The graph illustrates the relationship between inches of rain and storm duration. It includes lines representing storm frequency for various return periods, such as 25-year, 10-year, 5-year, 2-year, 1-year, 50-year, 100-year, and 250-year storms. The graph shows the expected rainfall for different storm durations, with blue and red lines indicating specific storm events (Feb 5–9 and Feb 26–28) for comparison.

West Yost Associates
Challenge: Siting Rain Gauges

![Graph showing rainfall data for different locations over a period of time.](graph_image)

- Green Valley School
- San Anselmo Town Hall
- Larkspur PS
- White Hill School

The graph plots rainfall (inches/hour) for the period from 2/5/2014 to 2/9/2014, showing the variability in rainfall at different times of the day and the different locations.
Results: 2-Year Storm Response

FM-16 (L180.030, 24" Pipe)

Flow (MGD) vs Rainfall (inches/hour)

- Flow
- Baseflow
- Rain

[Graph showing flow response over time, with peaks and troughs indicating storm events and associated rainfall.]
Saltwater Intrusion Testing

- Electroconductivity vs. Temperature
- 1-week at all sites concurrently
Interpreting Conductivity Results

Electroconductivity, μS/cm

Target Recycled Water EC Levels

Average Wastewater Conductivity Readings, Ross Valley Sewer System

Target Recycled Water EC Levels

Tributary Area Average Conductivity

- 8,900 - 12,700 μS/cm
- 1,900 - 2,800 μS/cm
- 850 - 1,400 μS/cm
- 500 - 600 μS/cm
I/I Analysis Tools
Hydraulic Modeling: Flow Projections
Modeling Results: Wet Weather Response by Basin
I/I Analysis Using InfoMaster Sewer Risk Modeling Software

- Magnitude of I/I Criteria (instead of LOF)
 - Flow Monitoring Results
 - Smoke and/or Salinity Testing Results
 - Groundwater Levels
 - CCTV I/I Contributing Defects
Defect Severity: From Failure to I/I Focus
I/I Defect Severity Results

Symbology
- City Limits
- Study Area
- Pump Station
- Force Main
- Gravity Main
- Manhole
- Manhole Investigation

Total Defect Score per Mile of Pipe
- < 150
- 150 to 300
- 301 to 450
- 451 to 600
- > 600

Salinity Monitor Average Conductivity (μS/cm)
- <= 1,500
- 1,501 - 15,000
- > 15,000

West Yost Associates
I/I Analysis Using InfoMaster Sewer Risk Modeling Software

- Benefits of I/I Reduction Criteria (instead of COF)
 - Ability to Accurately Quantify I/I Reduction
 - Increased Compliance with Regulations
 - Reduced Maintenance
Analysis Performed on a Sub-Basin Level

<table>
<thead>
<tr>
<th>WY Subbasin</th>
<th>Flow Monitoring Data Quality</th>
<th>Metered MH</th>
<th>Max R-Value</th>
<th>CCTV I/I Score per Mile Inspected</th>
<th>Work Order Count per Parcel</th>
<th>Salinity Reduction</th>
</tr>
</thead>
<tbody>
<tr>
<td>N-6A</td>
<td>Acceptable</td>
<td>223-39X</td>
<td>47%</td>
<td>987</td>
<td>0.4</td>
<td>None</td>
</tr>
<tr>
<td>S-3</td>
<td>Good</td>
<td>537-14X</td>
<td>44%</td>
<td>585</td>
<td>0.3</td>
<td>None</td>
</tr>
<tr>
<td>S-9A</td>
<td>Acceptable</td>
<td>453-07X</td>
<td>22%</td>
<td>245</td>
<td>0.2</td>
<td>None</td>
</tr>
<tr>
<td>LP-4A</td>
<td>Poor</td>
<td>329-08X</td>
<td>28%</td>
<td>538</td>
<td>0.7</td>
<td>None</td>
</tr>
<tr>
<td>S-4A</td>
<td>Acceptable</td>
<td>558-11X</td>
<td>32%</td>
<td>432</td>
<td>0.5</td>
<td>None</td>
</tr>
<tr>
<td>LP-4C</td>
<td>Good</td>
<td>350-07X</td>
<td>34%</td>
<td>391</td>
<td>0.4</td>
<td>None</td>
</tr>
<tr>
<td>LP-3B</td>
<td>Acceptable</td>
<td>392-07X</td>
<td>25%</td>
<td>430</td>
<td>0.3</td>
<td>Area of Interest</td>
</tr>
<tr>
<td>LP-4D</td>
<td>Acceptable</td>
<td>350-01X</td>
<td>33%</td>
<td>318</td>
<td>0.5</td>
<td>None</td>
</tr>
<tr>
<td>LP-3A</td>
<td>Acceptable</td>
<td>392-43X</td>
<td>34%</td>
<td>267</td>
<td>0.3</td>
<td>Area of Interest</td>
</tr>
<tr>
<td>S-9B</td>
<td>Acceptable</td>
<td>432-22X</td>
<td>40%</td>
<td>392</td>
<td>0.1</td>
<td>None</td>
</tr>
<tr>
<td>LP-4B</td>
<td>Acceptable</td>
<td>329-32X</td>
<td>20%</td>
<td>348</td>
<td>0.6</td>
<td>None</td>
</tr>
<tr>
<td>LP-5A</td>
<td>Good</td>
<td>413-35X</td>
<td>22%</td>
<td>222</td>
<td>0.3</td>
<td>Area of Interest</td>
</tr>
<tr>
<td>LP-2A</td>
<td>Acceptable</td>
<td>539-15X</td>
<td>19%</td>
<td>91</td>
<td>0.3</td>
<td>Area of Interest</td>
</tr>
</tbody>
</table>
Other Benefits: Defect & Lateral Locations
Other Benefits: R/R Method Selection

- Pipe Bursting
- Sewer Replacement
- InfoMaster identifies sag and sewer lateral locations
Other Benefits: R/R Method Selection

- Sewer Relocation
 - Backyard easement to street ROW
- InfoMaster/GIS identify potential utility conflicts
I/I Reduction Methods
Rehab/Replacement Methods

- CIPP Lining
- Pipe Bursting
- Open Cut
- Horizontal Directional Drilling
Inflow Source Disconnection
Private Sewer Lateral Toolbox

- Ownership
- Grants
- Outreach
- Maintenance
- Insurance
- Mandates

WEST YOST ASSOCIATES
Private Sewer Lateral Toolbox
Mandates: Legal Ordinance Tools

☑️ Mandate Good PSL Condition
1. Good working order
2. No cracks/breaks or root intrusion
3. Holds water (passes a pressure test)
4. Does not discharge stormwater or grease

☑️ Define Agency Rights
1. Right to inspect triggers
2. Right test triggers
3. Right to repair triggers
4. Right to recover costs
 ▪ Enforcement provisions & protocols
Mandates: Legal Ordinance Tools

- Triggers requiring inspection
 - Sale of property
 - Blockage/SSO
 - Agency discretion

- Testing parameters and pass/fail limits
 - Pressure Test (pass/fail)
 - CCTV Inspection (identifies problem – or pass/fail)

- Enforcement provisions
 - Violation notification process
 - Timeframes and penalties
 - Consider agency administrative requirements
Private Sewer Lateral Toolbox

Ownership
Grants
Outreach
Maintenance
Insurance
Mandates

WEST YOST ASSOCIATES
Questions?

Lani Good, PE
(925) 949-5822
lgood@westyost.com
City of San Mateo I/I Reduction Plan

- **City of San Mateo:**
 R-factors range from 1.5 to 88 percent

- **Goal:** Develop an I/I Reduction Pilot Program to reduce wet-weather SSO’s and comply with EPA consent decree requirements