Silicon Valley
Mid-Summer Emergency:
Santa Clara Addresses Peak-Demand Repair of 96-inch Pipeline

Mike Larsen
Anna Pridmore, PhD, PE
Santa Clara Valley Water District:

- Primary Water Source for Santa Clara Valley
- Flood management and wholesale water for:
 - 2 million people
 - 17 municipalities
- 121 billion gallons annually
- Pipeline inventory:
 - 142 miles of pipelines
 - Pipeline diameters 30 - 120 inches

Santa Clara Conduit:

- 96-inch prestressed concrete cylinder pipeline
- 23 miles long
- Critical pipeline conveying Central Valley Project water to Santa Clara County
PIPE RUPTURE

Site of ruptured pipe

- ~6:30 AM August 1, 2015
- Drastic pressure loss along Santa Clara Conduit
- Investigation determined location
- Rupture occurred during a power outage
- 20 million gallons of water lost due to rupture
Pipeline providing up to 40 percent of Santa Clara County’s drinking water supply

Location of break
PIPE RUPTURE LOCATION & AREA IMPACTED

Santa Clara Conduit
Location of August 2015 failure.

August 2015 Failure Location
Sta. 12+17

Santa Clara Conduit Section 2

Santa Clara Tunnel Inlet
Sta. 15+19

Valve Vault #4
Sta. 11+26

Bifurcation Structure
Sta. 3+52

Direction of Water Flow

Google earth
© 2015 google
Scope of investigation

- Forensic inspection on 6 August 2015
- Metallurgical analysis of pretressing wire
 - Surface chemical analysis
 - Fractographic analysis to identify causes of fracture
 - Metallographic analysis to evaluate corrosion mechanism
- Tension and torsion testing of prestressing wire
- Petrographic analysis of mortar coating and concrete core
 - Evaluate quality of mortar and concrete
 - Identify evidence of deterioration
- Testing absorption, density, permeability, and chloride content of mortar coating
• Prestressing wire
 • All wires broken between 1 and 12 ft from the downstream joint
 • Corroded wires with brittle fracture surfaces
 • Only a few wires in the failure zone had necking indications of ductile failure.
• Mechanical tests show prestressing wire unaffected by corrosion has good strength and ductility.

Brittle wire fracture surface
Longitudinal splits and corrosion oriented along the wire axis
• Mortar coating
 • Corrosion staining on fractures through the thickness
 • Two distinct layers
 • inner layer lightly colored (higher w/cm ratio and/or higher void content)
 • Petrographic analysis identified high air void content and interconnected air voids in the mortar coating specimens
 • Chloride ion content low on outside and higher on inside surface

Layered mortar coating near downstream joint. Outer layer applied as a local patch.

Ultrathin section of mortar with interconnected entrapped air voids (yellow arrows).
• Concrete core
 • Fracture surfaces did not show fracture through the aggregates, an indication of weak concrete.
 • Concrete core from the failure area washed away during the rupture and removed during initial pipe demolition prior to inspection.
 • Petrographic analysis identified weak bond between the aggregate and cement paste, likely due to excess bleed water (wet aggregate).
Primary cause of failure was manufacturing defects
 • Highly porous mortar coating
 • Weak concrete in its core
 • Use of gauge 18 steel cylinder instead of the specified 16 gauge

Failure mechanism
 • Porous mortar coating allowed ingress of moisture and air, resulting in carbonation of the cement paste and corrosion of the prestressing wires.
 • Corrosion resulted in hydrogen assisted brittle cracking of the wires.

Timing of Failure
 • Transition from operating conditions to static head conditions after the power outage at Pacheco Pumping Station and subsequent valve closures.
Electromagnetic (EM) inspection
 • Performed prior to visual and sounding inspection
 • Marked wall of pipe potentially containing distress based on field interpretation of the electromagnetic inspection results

Internal visual and sounding inspection near ruptured pipe
 • Valve Vault #4 (Sta. 11+26) to the bottom of the sloped section of pipeline near Sta. 13+00
 • Detailed inspection of pipes marked based on EM inspection results
 • no hollow sounding areas, no longitudinal cracks, no wide circumferential cracks, and no joint openings
THE RESPONSE

Factors:

• Timing critical – hot summer; peak demand
• SCVWD had spare pipe to replace ruptured segment
• Replacement of two adjacent distressed pipes not feasible within time available

Actions:

• Carbon Fiber-Reinforced Polymer (CFRP) liner as alternative to replacement of distressed segments
• Multiple specialty CFRP companies contacted – Work awarded based on experience and responsiveness
• Mobilization immediately after access available
• Repairs began within 7 days
• CFRP repairs completed in 8 days, including cure

Ruptured pipe visible after water subsided
CARBON FIBER REINFORCED POLYMER (CFRP) LINER REPAIR DESIGN

CFRP is a stand alone system
 • Host pipe provides a form for CFRP repair
 • Repair does not depend on host pipe for strength

CFRP based on LFRD approach
 • Load factors
 • Strength reduction factors
 • Material adjustment factors
 • Time effect factors – Short & Long term loads based on AWWA Draft Standards
CFRP strengthening design loads include:

- Working pressure: 152 psi (350 ft of pressure head)
- Working plus transient pressure: 213 psi (1.4 x working pressure)
- 10 feet of soil cover
- Full vacuum inside the pipeline (-14.7 psi internal pressure)
- Internal temp variation of +/- 30⁰F.
Strength limit state designs considered:

- Circumferential rupture of CFRP laminate
- Circumferential buckling of CFRP laminate
- Longitudinal rupture of CFRP laminate
- Longitudinal buckling of CFRP laminate
- Longitudinal failure of CFRP
- Pipe end shear failure of CFRP
Installation of a CFRP lining system involves application of sheets of carbon fiber fabric, saturated with a two part 100% solids epoxy, applied to the inside walls of the host pipe. Once secured they create a stand alone structural system.

Installation of CFRP liners consists of:

- Surface preparation
- Materials saturation
- Application of the materials
- Curing of the system
Inner core concrete chipped out and exposed steel prepared to near white metal in joint region
Mechanical saturator for CFRP
Installation of longitudinal layer of CFRP
Installation of circumferential layer of CFRP
CFRP LINER INSTALLATION

CFRP layers at end detail
Installation of a watertightness layer
Application of thickened epoxy to cover all edges and seams
CFRP LINER INSTALLATION

Epoxy mortar applied to end termination
Completed CFRP lining
Likely causes of failure – based on site & lab inspection:

- Manufacturer defects (highly porous mortar coating, weak concrete core, use of 18 gauge steel cylinder instead of specified 16 gauge)
- Increased pressure from pipeline restart after power outage likely contributed to the timing of the pipe rupture

Emergency response

- Close coordination between multiple organizations to support pipeline inspection, failure investigation, and emergency repairs helped minimize downtime for this critical pipeline.
- CFRP lining provided an effective approach which minimized impact on the SCVWD and local residents
Thank you!

Mike Larsen
Senior Manager, Municipal Infrastructure
972.210.9511
mlarsen@structuraltec.com

Anna Pridmore, PhD, PE, M. ASCE
Vice President, Municipal Infrastructure
714.869.8824
apridmore@structuraltec.com